Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 223, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172154

RESUMO

The heavy fermion paramagnet UTe2 exhibits numerous characteristics of spin-triplet superconductivity. Efforts to understand the microscopic details of this exotic superconductivity have been impeded by uncertainty regarding the underlying electronic structure. Here we directly probe the Fermi surface of UTe2 by measuring magnetic quantum oscillations in pristine quality crystals. We find an angular profile of quantum oscillatory frequency and amplitude that is characteristic of a quasi-2D Fermi surface, which we find is well described by two cylindrical Fermi sheets of electron- and hole-type respectively. Additionally, we find that both cylindrical Fermi sheets possess considerable undulation but negligible small-scale corrugation, which may allow for their near-nesting and therefore promote magnetic fluctuations that enhance the triplet pairing mechanism. Importantly, we find no evidence for the presence of any 3D Fermi surface sections. Our results place strong constraints on the possible symmetry of the superconducting order parameter in UTe2.

2.
Phys Rev Lett ; 126(15): 157201, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929262

RESUMO

We present acoustic signatures of the electric quadrupolar degrees of freedom in the honeycomb-layer compound UNi_{4}B. The transverse ultrasonic mode C_{66} shows softening below 30 K both in the paramagnetic phase and antiferromagnetic phases down to ∼0.33 K. Furthermore, we traced magnetic field-temperature phase diagrams up to 30 T and observed a highly anisotropic elastic response within the honeycomb layer. These observations strongly suggest that Γ_{6}(E_{2g}) electric quadrupolar degrees of freedom in localized 5f^{2} (J=4) states are playing an important role in the magnetic toroidal dipole order and magnetic-field-induced phases of UNi_{4}B, and evidence some of the U ions remain in the paramagnetic state even if the system undergoes magnetic toroidal ordering.

3.
Phys Rev Lett ; 123(3): 036406, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31386447

RESUMO

Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronic devices. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.146601] on magnetically doped topological insulators predicts that quantum corrections Δκ to the temperature dependence of conductivity can change sign across the Curie transition. This phenomenon has been attributed to a suppression of the Berry phase of the topological surface states at the Fermi level, caused by a magnetic energy gap. Here, we demonstrate experimentally that Δκ can reverse its sign even when the Berry phase at the Fermi level remains unchanged. The contradictory behavior to theory predictions is resolved by extending the model by Lu and Shen to a nonmonotonic temperature scaling of the inelastic scattering length showing a turning point at the Curie transition.

4.
Sci Rep ; 5: 15904, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26514364

RESUMO

Many current research efforts in strongly correlated systems focus on the interplay between magnetism and superconductivity. Here we report on coexistence of both cooperative ordered states in recently discovered stoichiometric and fully inversion symmetric heavy fermion compound Ce3PdIn11 at ambient pressure. Thermodynamic and transport measurements reveal two successive magnetic transitions at T1 = 1.67 K and TN = 1.53 K into antiferromagnetic type of ordered states. Below Tc = 0.42 K the compound enters a superconducting state. The large initial slope of dBc2/dT ≈ - 8.6 T/K indicates that heavy quasiparticles form the Cooper pairs. The origin of the two magnetic transitions and the coexistence of magnetism and superconductivity is briefly discussed in the context of the coexistence of the two inequivalent Ce-sublattices in the unit cell of Ce3PdIn11 with different Kondo couplings to the conduction electrons.

5.
J Phys Condens Matter ; 27(9): 095602, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25679366

RESUMO

The effect of substituting Rh in CeRh(1-x)Pd(x)In5 with Pd up to x = 0.25 has been studied on single crystals. The crystals have been grown by means of the In self-flux method and characterized by x-ray diffraction and microprobe. The tetragonal HoCoGa5-type of structure and the c/a ratio of the parent compound remains intact by the Pd substitution; the unit cell volume increases by 0.6% with x = 0.25 of Pd. The low-temperature behavior of resistivity was studied also under hydrostatic pressure up to 2.25 GPa. The Pd substitution for Rh affects the magnetic behavior and the maximum value of the superconducting transition temperature measured at pressures above 2 GPa only negligibly. On the other hand, the results provide evidence that superconductivity in CeRh(0.75)Pd(0.25)In5 is induced at significantly lower pressures, i.e. the Pd substitution for Rh shifts the CeRh(1-x)Pd(x)In5 system closer to coexistence of magnetism and superconductivity at ambient pressure.

6.
J Phys Condens Matter ; 25(41): 416006, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24055927

RESUMO

We report on detailed low-temperature measurements of the magnetization, the specific heat and the electrical resistivity on high-quality CeRuSn single crystals. The compound orders antiferromagnetically at T(N) = 2.8 K with the Ce(3+) ions locked within the a-c plane of the monoclinic structure. Magnetization shows that below T(N) CeRuSn undergoes a metamagnetic transition when applying a magnetic field of 1.5 and 0.8 T along the a- and c-axis, respectively. This transition manifests in a tremendous negative jump of ~25% in the magnetoresistance. The value of the saturated magnetization along the easy magnetization direction (c-axis) and the magnetic entropy above T(N) derived from specific heat data correspond to the scenario of only one third of the Ce ions in the compound being trivalent and carrying a stable Ce(3+) magnetic moment, whereas the other two thirds of the Ce ions are in a nonmagnetic tetravalent and/or mixed valence state. This is consistent with the low-temperature CeRuSn crystal structure i.e., a superstructure consisting of three unit cells of the CeCoAl type piled up along the c-axis, and in which the Ce(3+) ions are characterized by large distances from the Ru ligands while the Ce-Ru distances of the other Ce ions are much shorter causing a strong 4f-ligand hybridization and hence leading to tetravalent and/or mixed valence Ce ions.


Assuntos
Ligas/química , Cristalização , Campos Magnéticos , Metais/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Teste de Materiais , Condutividade Térmica
7.
J Phys Condens Matter ; 25(18): 186003, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23587762

RESUMO

We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.


Assuntos
Monóxido de Carbono/química , Magnetismo , Neodímio/química , Piridinas/química , Teoria Quântica , Marcadores de Spin , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Espectroscopia de Mossbauer , Temperatura
8.
J Phys Condens Matter ; 24(18): 186003, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22499160

RESUMO

We report on the specific heat, magnetization and ac susceptibility measurements of single crystals of hybrid frustrated magnets Gd(1.8)Tb(0.2)Ti(2)O(7) and Gd(1.5)Tb(0.5)Ti(2)O(7). The analysis of experimental data revealed that, although partial replacing of the Gd(3+) ions by the Tb(3+) ions in the Gd(2)Ti(2)O(7) host lattice slightly enhances antiferromagnetic coupling, as inferred from the evolution of the paramagnetic Curie-Weiss temperature, the ordering temperature gradually decreases. Paramagnetic correlations introduced by the Tb(3+) ions cause this perturbation, altering the effective further neighbor interactions and destabilizing the ground state in Gd(2)Ti(2)O(7). In addition, the low-energy states of Gd(2-x)Tb(x)Ti(2)O(7) are suggested to possess a nature different from those in parent members Tb(2)Ti(2)O(7) and Gd(2)Ti(2)O(7). Finally, the frequency-dependent magnetic susceptibility behavior in Gd(1.5)Tb(0.5)Ti(2)O(7) is consistent with the formation of a spin-glass-like state indicating a pronounced slowing down of the dynamical response of the studied hybrid magnets.

9.
J Phys Condens Matter ; 23(7): 076001, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21411888

RESUMO

UNiGa crystallizes in the hexagonal ZrNiAl structure and orders antiferromagnetically below T(N)=39.3 K with the U moments oriented along the c-axis (easy magnetization axis). There are four different antiferromagnetic phases in zero magnetic field and two field induced magnetic phases in UNiGa. For all of them, a strong uniaxial anisotropy is encountered. All the magnetic phases are described by propagation vectors of (0 0 q(i))-type, where q(i) describes the stacking of the ferromagnetic basal planes along the hexagonal c-axis. However, recently (0 0 L)-type Bragg reflections associated with the magnetic ordering have been observed by neutron diffraction. Based on unpolarized and polarized neutron diffraction and non-resonant and resonant synchrotron x-ray scattering experiments combined with polarization analysis we conclude that small amounts of magnetic moments oriented perpendicular to the c-axis exist in UNiGa. Whether these moments reside on Ni atoms outside the U-Ni planes or at interstitial regions could not be determined.


Assuntos
Ligas/química , Gálio/química , Magnetismo , Modelos Químicos , Níquel/química , Urânio/química , Simulação por Computador
10.
J Phys Condens Matter ; 23(1): 016002, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21406832

RESUMO

For many years, micromagnetism and Monte Carlo simulation have served as the two main tools for studying the magnetic structures and physical properties of nanomagnets. However, the two approaches are based on classical physics, and thus lack the flexibility to deal with complex nanosystems, such as those of very tiny size or consisting of ions of different elements. To overcome the difficulty, a quantum simulation model has been proposed and a new computational algorithm developed in the present work. Both have been successfully applied to an assumed PrAl2 nanoparticle to study its magnetic behavior in external magnetic fields exerted along the crystal axes. The theoretical results obtained with the model and the new algorithm are reasonable physically and exhibit strong finite-size effects. The model can be generalized to study the magnetic configurations and physical properties of more complicated nanosystems, such as nanowires, nanotubes, etc.

12.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...